Center of Gravity, Centroid, and Moment of Inertia

Chapter Objectives

✓ To discuss the concept of the center of gravity, center of mass, and the centroid.
✓ To show how to determine the location of the center of gravity and centroid for a system of discrete particles and a body of arbitrary shape.
✓ To present a method for finding the resultant of a general distributed loading.
✓ To show how to determine the moment of inertia of an area.
Center of Gravity

- Locates the resultant weight of a system of particles
- Consider system of n particles fixed within a region of space
- The weights of the particles can be replaced by a single (equivalent) resultant weight having defined point G of application
Center of Gravity

- Resultant weight = total weight of n particles
 \[W_R = \sum W \]

- Sum of moments of weights of all the particles about x, y, z axes = moment of resultant weight about these axes

- Summing moments about the x axis,
 \[\bar{x}W_R = \bar{x}_1W_1 + \bar{x}_2W_2 + \ldots + \bar{x}_nW_n \]

- Summing moments about the y axis,
 \[\bar{y}W_R = \bar{y}_1W_1 + \bar{y}_2W_2 + \ldots + \bar{y}_nW_n \]
CENTER OF GRAVITY, CENTER OF MASS, AND THE CENTROID OF A BODY (cont)

Center of Gravity

• Although the weights do not produce a moment about z axis, by rotating the coordinate system 90° about x or y axis with the particles fixed in it and summing moments about the x axis,
\[
\sum \bar{z} W_R = \sum \bar{z}_1 W_1 + \sum \bar{z}_2 W_2 + \ldots + \sum \bar{z}_n W_n
\]

• Generally,
\[
\bar{x} = \frac{\sum \bar{x} m}{\sum m}; \quad \bar{y} = \frac{\sum \bar{y} m}{\sum m}; \quad \bar{z} = \frac{\sum \bar{z} m}{\sum m}
\]
Center of Mass

- Provided acceleration due to gravity g for every particle is constant, then $W = mg$

$$\bar{x} = \frac{\sum \tilde{x}m}{\sum m} ; \bar{y} = \frac{\sum \tilde{y}m}{\sum m} , \bar{z} = \frac{\sum \tilde{z}m}{\sum m}$$

- By comparison, the location of the center of gravity coincides with that of center of mass

- Particles have weight only when under the influence of gravitational attraction, whereas center of mass is independent of gravity
Centroid of Mass

- A rigid body is composed of an infinite number of particles
- Consider arbitrary particle having a weight of \(dW\)

\[
\bar{x} = \frac{\int \tilde{x} dW}{\int dW}; \quad \bar{y} = \frac{\int \tilde{y} dW}{\int dW}; \quad \bar{z} = \frac{\int \tilde{z} dW}{\int dW}
\]
Centroid of a Volume

- Consider an object subdivided into volume elements dV, for location of the centroid,

\[
\bar{x} = \frac{\int x dV}{V}; \quad \bar{y} = \frac{\int y dV}{V}; \quad \bar{z} = \frac{\int z dV}{V}
\]
Centroid of an Area

- For centroid of surface area of an object, such as plate and shell, subdivide the area into differential elements dA

$$
\bar{x} = \frac{\int \tilde{x} dA}{A}; \quad \bar{y} = \frac{\int \tilde{y} dA}{A}; \quad \bar{z} = \frac{\int \tilde{z} dA}{A}
$$
Centroids of common shapes of areas

<table>
<thead>
<tr>
<th>Shape</th>
<th>\bar{x}</th>
<th>\bar{y}</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangular area</td>
<td></td>
<td>$\frac{h}{3}$</td>
<td>$\frac{bh}{2}$</td>
</tr>
<tr>
<td>Quarter-circular area</td>
<td>$\frac{4r}{3\pi}$</td>
<td>$\frac{4r}{3\pi}$</td>
<td>$\frac{\pi r^2}{4}$</td>
</tr>
<tr>
<td>Semicircular area</td>
<td>0</td>
<td>$\frac{4r}{3\pi}$</td>
<td>$\frac{\pi r^2}{2}$</td>
</tr>
<tr>
<td>Quarter-elliptical area</td>
<td>$\frac{4a}{3\pi}$</td>
<td>$\frac{4b}{3\pi}$</td>
<td>$\frac{ab}{2}$</td>
</tr>
<tr>
<td>Semicircular area</td>
<td>0</td>
<td>$\frac{4b}{3\pi}$</td>
<td>$\frac{ab}{2}$</td>
</tr>
<tr>
<td>Semiparabolic area</td>
<td>$\frac{3a}{8}$</td>
<td>$\frac{3h}{5}$</td>
<td>$\frac{2ah}{3}$</td>
</tr>
<tr>
<td>Parabolic area</td>
<td>0</td>
<td>$\frac{3h}{5}$</td>
<td>$\frac{4ah}{3}$</td>
</tr>
<tr>
<td>Parabolic spandrel</td>
<td>$\frac{3a}{4}$</td>
<td>$\frac{3h}{10}$</td>
<td>$\frac{ah}{3}$</td>
</tr>
</tbody>
</table>
COMPOSITE BODIES

• Consists of a series of connected “simpler” shaped bodies, which may be rectangular, triangular or semicircular

• A body can be sectioned or divided into its composite parts

• Accounting for finite number of weights

\[
\bar{x} = \frac{\sum \tilde{x} W}{\sum W} \quad \bar{y} = \frac{\sum \tilde{y} W}{\sum W} \quad \bar{z} = \frac{\sum \tilde{z} W}{\sum W}
\]
COMPOSITE BODIES (cont)

Procedure for Analysis

Composite Parts
• Divide the body or object into a finite number of composite parts that have simpler shapes
• Treat the hole in composite as an additional composite part having negative weight or size

Moment Arms
• Establish the coordinate axes and determine the coordinates of the center of gravity or centroid of each part
COMPOSITE BODIES (cont)

Procedure for Analysis

Summations

• Determine the coordinates of the center of gravity by applying the center of gravity equations

• If an object is symmetrical about an axis, the centroid of the objects lies on the axis
EXAMPLE 1

Locate the centroid of the plate area.
EXAMPLE 1 (cont)

Solution

Composite Parts

• Plate divided into 3 segments.
• Area of small rectangle considered “negative”.

[Diagram of composite parts]
EXAMPLE 1 (cont)

Moment Arm

• Location of the centroid for each piece is determined and indicated in the diagram.

<table>
<thead>
<tr>
<th>Segment</th>
<th>(A (m^2))</th>
<th>(\bar{x}) (m)</th>
<th>(\bar{y}) (m)</th>
<th>(\bar{x}A (m^3))</th>
<th>(\bar{y}A (m^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{1}{2}(3)(3) = 4.5)</td>
<td>1</td>
<td>1</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>((3)(3) = 9)</td>
<td>-1.5</td>
<td>1.5</td>
<td>-13.5</td>
<td>13.5</td>
</tr>
<tr>
<td>3</td>
<td>(-(2)(1) = -2)</td>
<td>-2.5</td>
<td>2</td>
<td>5</td>
<td>-4</td>
</tr>
<tr>
<td></td>
<td>(\Sigma A = 11.5)</td>
<td></td>
<td></td>
<td>(\Sigma \bar{x}A = -4)</td>
<td>(\Sigma \bar{y}A = 14)</td>
</tr>
</tbody>
</table>

Summations

\[
\bar{x} = \frac{\Sigma \bar{x}A}{\Sigma A} = \frac{-4}{11.5} = -0.348 \text{mm}
\]

\[
\bar{y} = \frac{\Sigma \bar{y}A}{\Sigma A} = \frac{14}{11.5} = 1.22 \text{mm}
\]
Pressure Distribution over a Surface

- Consider the flat plate subjected to the loading function \(\rho = \rho(x, y) \) Pa (Force per unit area)
- Determine the force \(dF \) acting on the differential area \(dA \) m\(^2\) of the plate, located at the differential point \((x, y) \)
 \[
 dF = [\rho(x, y) \text{ N/m}^2](dA \text{ m}^2)
 = [\rho(x, y) \text{ dA}] \text{ N}

- Entire loading represented as infinite parallel forces acting on separate differential area \(dA \)
RESULTANT OF A DISTRIBUTED LOADING (cont)

Pressure Distribution over a Surface
• This system will be simplified to a single resultant force F_R acting through a unique point on the plate
RESULTANT OF A DISTRIBUTED LOADING (cont)

Magnitude of Resultant Force

- To determine magnitude of F_R, sum up the differential forces dF acting over the plate’s entire surface area dA
- Magnitude of resultant force = total volume under the distributed loading diagram
- Location of Resultant Force is

$$
\bar{x} = \frac{\int_A x \rho(x, y) dA}{\int_A \rho(x, y) dA} = \frac{\int_V x dV}{\int_V dV}
$$

$$
\bar{y} = \frac{\int_A y \rho(x, y) dA}{\int_A \rho(x, y) dA} = \frac{\int_V y dV}{\int_V dV}
$$
Distributed loads on beams

\(W \) is the force per unit length, N/m

\[
W = \int_0^L w\,dx \quad W = \int_0^L dA = A
\]

Thus, the load \(W \) is equal to the area below the distributed load curve, \(W \).

The point of application of the equivalent load is the centroid of the area of the distributed load.

\[
\bar{x} = \frac{\int \tilde{x}dA}{\int dA}
\]
Distributed loads on beams

1) Find the reaction forces at the hinge A and the tension on the cable BC

\[F = \frac{6 \cdot 3}{2} = 9 \text{kN} \]

\[\sum M_A = 0 \]
\[9 \cdot 4 - T \cdot \frac{3}{6.7} \cdot 6 = 0 \]
\[T = 13.4 \text{kN} \]

\[\sum F_x = 0 \]
\[P_x - 13.4 \cdot \frac{6}{6.7} = 0 \]
\[P_x = 12 \text{kN} \]

\[\sum F_y = 0 \]
\[P_y - 9 + 13.4 \cdot \frac{3}{6.7} = 0 \]
\[P_y = 3 \text{kN} \]
Example:

Wind load

\[
q = 50\sqrt{x}
\]

If the height of the building is 100m and if foundation is assumed to be fixed support, find the reaction forces exerted by the foundation.
Solution:

\[Q = \int q(x) \, dx = \int_{0}^{100} 50\sqrt{x} \, dx = 50 \cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}} \bigg|_{0}^{100} = \frac{100}{3} \cdot 100^{\frac{3}{2}} = 333.33 N \]

\[d = \frac{\int x \cdot q(x) \, dx}{\int q(x) \, dx} = \frac{\int_{0}^{100} x \cdot 50\sqrt{x} \, dx}{\int_{0}^{100} 50\sqrt{x} \, dx} = \frac{50 \cdot \frac{x^{\frac{5}{2}}}{\frac{5}{2}}}{333.33} = \frac{50 \cdot 100^{\frac{5}{2}}}{333.33} = 60.7 \text{ m} \]
Solution (continue):

\[\sum m_A = 0 \]

\[M_A - 3300 \times 60.7 = 0 \]

\[M_A = 2 \times 10^6 \text{N} \]

\[\sum F_y = 0 \quad A_y - 3300 = 0 \]

\[A_y = 3300 \text{N} \]

\[\sum F_x = 0 \quad A_x = 0 \quad \text{(neglecting weight of the building!!!)} \]
Determine (a) the distributed load w_o at the end D of the beam ABCD for which the reaction at B is zero, (b) the corresponding reactions at C.

Distributed loads on beams

50 kN·m

3.5 kN/m

$w_o = ?$
MOMENTS OF INERTIA FOR AREAS

• Centroid for an area is determined by the first moment of an area about an axis
• Second moment of an area is referred as the moment of inertia
• Moment of inertia of an area originates whenever one relates the normal stress σ or force per unit area
Moment of Inertia

- Consider area A lying in the x-y plane
- By definition, moments of inertia of the differential plane area dA about the x and y axes

\[dI_x = y^2 dA \quad dI_y = x^2 dA \]

- For entire area, moments of inertia are given by

\[I_x = \int_A y^2 dA \]
\[I_y = \int_A x^2 dA \]
Moment of Inertia

- Formulate the second moment of dA about the pole O or z axis
- This is known as the polar axis
 \[dJ_O = r^2 dA \]
 where r is perpendicular from the pole (z axis) to the element dA
- Polar moment of inertia for entire area,
 \[J_O = \int_A r^2 dA = I_x + I_y \]
PARALLEL AXIS THEOREM FOR AN AREA

- For moment of inertia of an area known about an axis passing through its centroid, determine the moment of inertia of area about a corresponding parallel axis using the parallel axis theorem.
- Consider moment of inertia of the shaded area.
- A differential element dA is located at an arbitrary distance y' from the centroidal x' axis.
PARALLEL AXIS THEOREM FOR AN AREA (cont)

- The fixed distance between the parallel x and x' axes is defined as d_y
- For moment of inertia of dA about x axis
 $$dI_x = \left(y' + d_y\right)^2 dA$$
- For entire area
 $$I_x = \int_A \left(y' + d_y\right)^2 dA$$
 $$= \int_A y'^2 dA + 2d_y \int_A y' dA + d_y^2 \int_A dA$$
- First integral represent the moment of inertia of the area about the centroidal axis
PARALLEL AXIS THEOREM FOR AN AREA (cont)

- Second integral $= 0$ since x' passes through the area’s centroid C
 $$\int y' \, dA = \bar{y} \int dA = 0; \quad \bar{y} = 0$$

- Third integral represents the total area A
 $$I_x = \bar{I}_x + Ad_y^2$$

- Similarly
 $$I_y = \bar{I}_y + Ad_x^2$$

- For polar moment of inertia about an axis perpendicular to the x-y plane and passing through pole O (z axis)
 $$J_o = \bar{J}_c + Ad_z^2$$
EXAMPLE 2

Determine the moment of inertia for the rectangular area with respect to (a) the centroidal x' axis, (b) the axis x_b passing through the base of the rectangular, and (c) the pole or z' axis perpendicular to the x'-y' plane and passing through the centroid C.

![Diagram of a rectangular area with axes labeled x', y', x_b, and centroid C.]
EXAMPLE 2 (cont)

Solution

Part (a)
• Differential element chosen, distance \(y' \) from \(x' \) axis.
• Since \(dA = b \ dy' \),

\[
\bar{I}_x = \int_A y'^2 \, dA = \int_{-h/2}^{h/2} y'^2 \, (bdy') = \int_{-h/2}^{h/2} y'^2 \, dy = \frac{1}{12} bh^3
\]

Part (b)
• By applying parallel axis theorem,

\[
I_{xb} = \bar{I}_x + Ad^2 = \frac{1}{12} bh^3 + bh\left(\frac{h}{2}\right)^2 = \frac{1}{3} bh^3
\]
EXAMPLE 2 (cont)

Solution

Part (c)

- For polar moment of inertia about point C,

\[
\bar{I}_y = \frac{1}{12} hb^3
\]

\[
J_C = \bar{I}_x + \bar{I}_y = \frac{1}{12} bh(h^2 + b^2)
\]
MOMENTS OF INERTIA FOR COMPOSITE AREAS

- Composite area consist of a series of connected simpler parts or shapes
- Moment of inertia of the composite area = algebraic sum of the moments of inertia of all its parts

Procedure for Analysis

Composite Parts
- Divide area into its composite parts and indicate the centroid of each part to the reference axis

Parallel Axis Theorem
- Moment of inertia of each part is determined about its centroidal axis
MOMENTS OF INERTIA FOR COMPOSITE AREAS (cont)

Procedure for Analysis

Parallel Axis Theorem

• When centroidal axis does not coincide with the reference axis, the parallel axis theorem is used

Summation

• Moment of inertia of the entire area about the reference axis is determined by summing the results of its composite parts
EXAMPLE 3

Compute the moment of inertia of the composite area about the x axis.
EXAMPLE 3 (cont)

Solution

Composite Parts

• Composite area obtained by subtracting the circle form the rectangle.

• Centroid of each area is located in the figure below.
EXAMPLE 3 (cont)

Solution

Parallel Axis Theorem

Circle

\[I_x = \bar{I}_x + Ad_y^2 \]
\[= \frac{1}{4} \pi (25)^4 + \pi (25)^2 (75)^2 = 11.4 \times 10^6 \, mm^4 \]

Rectangle

\[I_x = \bar{I}_x + Ad_y^2 \]
\[= \frac{1}{12} (100)(150)^3 + (100)(150)(75)^2 = 112.5 \times 10^6 \, mm^4 \]
EXAMPLE 3 (cont)

Solution

Summation

For moment of inertia for the composite area,

\[I_x = -11.4 \times 10^6 + 112.5 \times 10^6 \]

\[= 101 \times 10^6 \text{mm}^4 \]