ECTS @ IUE ECTS @ IUE ECTS @ IUE ECTS @ IUE ECTS @ IUE ECTS @ IUE ECTS @ IUE

Syllabus ( TTI 513 )


   Basic information
Course title: Data Management in Smart Cities
Course code: TTI 513
Lecturer: Dr. Rabia BOVKIR
ECTS credits: 7.5
GTU credits: 3 (3+0+0)
Year, Semester: 2023, Fall
Level of course: Second Cycle (Master's)
Type of course: Institute elective
Language of instruction: Turkish
Mode of delivery: Face to face
Pre- and co-requisites: none
Professional practice: No
Purpose of the course: This study aims to analyse the notion of data and data sources in order to explore future technology trends in smart cities. Specifically, it focuses on data management strategies aligned with data models, database architecture, database management systems, and data pre-processing methodologies. The objective of this course is to address the management of big data infrastructure in smart cities, focusing on concepts such as data and data types, principles and architecture of databases, levels of abstraction for database design, approaches to data pre-processing, the use of Structured Query Language (SQL) and relational database approaches, as well as the utilisation of NoSQL unstructured data structures.
   Learning outcomes Up

Upon successful completion of this course, students will be able to:

  1. Understand, interpret and manage the basic components of big data management in smart cities.

    Contribution to Program Outcomes

    1. Veri yönetimi ve analitiği, coğrafi bilgi teknolojileri, ulaşım/trafik yönetimi, sensörler, haberleşme ve ağ altyapısı gibi teknikleri araştırma ve projelerinde tanımlamak, analiz etmek ve çözmek (3)
    2. Gelişmiş mühendislik ve planlama problemlerini formüle edip çözmek (4)
    3. Akıllı Şehir ve Ulaşım teknolojileri alanındaki modern ekipman ve yazılımları kullanmak, ilgili teknik becerilerden faydalanmak (5)
    4. Modern teknolojiyle sürekli öğrenme bilinci geliştirmek (9)

    Method of assessment

    1. Written exam
    2. Term paper
  2. Design a database in line with smart city application needs, interpret and apply data models and database management approaches.

    Contribution to Program Outcomes

    1. Veri yönetimi ve analitiği, coğrafi bilgi teknolojileri, ulaşım/trafik yönetimi, sensörler, haberleşme ve ağ altyapısı gibi teknikleri araştırma ve projelerinde tanımlamak, analiz etmek ve çözmek (3)
    2. Gelişmiş mühendislik ve planlama problemlerini formüle edip çözmek (4)
    3. Akıllı Şehir ve Ulaşım teknolojileri alanındaki modern ekipman ve yazılımları kullanmak, ilgili teknik becerilerden faydalanmak (5)
    4. Modern teknolojiyle sürekli öğrenme bilinci geliştirmek (9)

    Method of assessment

    1. Written exam
    2. Term paper
  3. Formulate query procedures and draw conclusions using data preprocessing and database management systems for smart city applications.

    Contribution to Program Outcomes

    1. Veri yönetimi ve analitiği, coğrafi bilgi teknolojileri, ulaşım/trafik yönetimi, sensörler, haberleşme ve ağ altyapısı gibi teknikleri araştırma ve projelerinde tanımlamak, analiz etmek ve çözmek (3)
    2. Gelişmiş mühendislik ve planlama problemlerini formüle edip çözmek (4)
    3. Akıllı Şehir ve Ulaşım teknolojileri alanındaki modern ekipman ve yazılımları kullanmak, ilgili teknik becerilerden faydalanmak (5)
    4. Mevcut bilgiyi geliştirme yöntemleri bulmak (10)

    Method of assessment

    1. Written exam
    2. Term paper
  4. Criticize the current situation in big data management in smart cities and determine solutions with a technical and practical approach.

    Contribution to Program Outcomes

    1. Veri yönetimi ve analitiği, coğrafi bilgi teknolojileri, ulaşım/trafik yönetimi, sensörler, haberleşme ve ağ altyapısı gibi teknikleri araştırma ve projelerinde tanımlamak, analiz etmek ve çözmek (3)
    2. Gelişmiş mühendislik ve planlama problemlerini formüle edip çözmek (4)
    3. Akıllı Şehir ve Ulaşım teknolojileri alanındaki modern ekipman ve yazılımları kullanmak, ilgili teknik becerilerden faydalanmak (5)
    4. Modern teknolojiyle sürekli öğrenme bilinci geliştirmek (9)
    5. Mevcut bilgiyi geliştirme yöntemleri bulmak (10)

    Method of assessment

    1. Written exam
    2. Term paper
   Contents Up
Week 1: Introduction to smart cities basic concepts and components
Week 2: The significance and administration of data in the management of smart cities.
Week 3: Introduction to database, data models and database architectures
Week 4: Big data concept and characteristics
Week 5: Big data sources in smart cities – Sensors, data collection and actuators
Week 6: Big data sources in smart cities – Internet of Things
Week 7: Big data management technologies – Introduction to database technologies. Term Project.
Week 8: Structured database management systems – Relational databases with Structured Query Language (SQL)
Week 9: Unstructured database management systems (NoSQL)
Week 10: Examination of geographic databases and geographic data structures.
Week 11: Data preprocessing approaches – Statistical Data Analyses – Data Spreads, Correlation, Dimensionality Reduction
Week 12: Data preprocessing approaches – Missing data – Outlier Analysis – Data scaling
Week 13: Future trends in big data management - Web - Cloud computing infrastructure
Week 14: Smart city data management project presentations
Week 15*: -
Week 16*: Final Exam
Textbooks and materials: - Ders notları ve slaytları
- A. Meier ve M. Kaufmann. “SQL & NoSQL Databases - Models, Languages, Consistency Options and Architectures for Big Data Management”. Springer Vieweg, Wiesbaden, Almanya, 2019.
- S.E. Bibri. “Big Data Science and Analytics for Smart Sustainable Urbanism”. Springer Cham, Switzerland, 2019.
Recommended readings: - L. Perkins. “Seven Databases in Seven Weeks - A Guide to Modern Databases and the NoSQL Movement”. The Pragmatic Programmers, LLC, USA, 2018.
- C. Negru, F. Pop, M. Chinnici. “Data Science and Big Data Analytics in Smart Environments”. CRC Press, 2021.
  * Between 15th and 16th weeks is there a free week for students to prepare for final exam.
Assessment Up
Method of assessment Week number Weight (%)
Mid-terms: 0
Other in-term studies: 0
Project: 7-14 50
Homework: 0
Quiz: 0
Final exam: 16 50
  Total weight:
(%)
   Workload Up
Activity Duration (Hours per week) Total number of weeks Total hours in term
Courses (Face-to-face teaching): 3 14
Own studies outside class: 5 14
Practice, Recitation: 0 0
Homework: 0 0
Term project: 5 8
Term project presentation: 4 2
Quiz: 0 0
Own study for mid-term exam: 0 0
Mid-term: 0 0
Personal studies for final exam: 4 5
Final exam: 3 1
    Total workload:
    Total ECTS credits:
*
  * ECTS credit is calculated by dividing total workload by 25.
(1 ECTS = 25 work hours)
-->